Find the exact values of cos150° and sin150°.
Step 1: Compute the exact value of cos150°:
Since, 150°=180°-30°
So we can write cos150° as
cos150°=cos180°-30°=-cos30° ∵cos(180-θ)=-cosθ
=-32∵cos30°=32
Step 2: Compute the exact value of sin150°:
We can find the value as
sin150°=sin180°-30°
=sin30°∵sin180-θ=sinθ
=12∵sin30°=12
Hence, the exact value of cos150°=-32 and sin150°=12.