(a−2x)7=a7−7C1a6(2x)+7C2a5(2x)2−7C3a4(2x)3+... upto 8 terms Now remembering that nCr=nCn−r after calculating the coefficients upto 7C3, the rest may be written down at once; for 7C4=7C3;7C5=7C2 and so on Hence, (a−2x)7=a7−7a6(2x)+7.61.2a5(2x)2−7.6.51.2.3a4(2x)3+..... =a7−7a6(2x)+21a5(2x)2−35a4(2x)3++35a3(2x)4−21a2(2x)5+7a(2x)6−(2x)7 =a7−14a6x+84a5x2−280a4x3+560a3x5+448ax6−128x7