The correct option is
B p3+4p2−20p−48We solve the given expression
(p+2)(p−4)(p+6) as shown below:
[(p+2)(p−4)](p+6)
=[p(p−4)+2(p−4)](p+6)
=(p2−4p+2p−8)(p+6)
=(p2−2p−8)(p+6)(Combiningliketerms)
=(p+6)(p2−2p−8)
=p(p2−2p−8)+6(p2−2p−8)
=p3−2p2−8p+6p2−12p−48
=p3+(6−2)p2+(−8−12)p−48(Combiningliketerms)
=p3+4p2−20p−48
Hence, (p+2)(p−4)(p+6)=p3+4p2−20p−48