In the given expression a4+4a2+16, add and subtract 4a2 to make it a perfect square as shown below:
a4+4a2+16=(a4+4a2+16+4a2)−4a2=(a4+8a2+16)−4a2=[(a2)2+(4)2+2(a2)(4)]−4a2
=(a2+4)2−4a2
(using the identity (a+b)2=a2+b2+2ab)
We also know the identity a2−b2=(a+b)(a−b), therefore,
Using the above identity, the expression (a2+4)2−4a2can be factorised as follows:
(a2+4)2−4a2=(a2+4)2−(2a)2=(a2+4+2a)(a2+4−2a)
Hence, a4+4a2+16=(a2+4+2a)(a2+4−2a)