We can write above equation as
a(b4−c4)−b(b4−c4+a4−b4)+c(a4−b4)
=a(b4−c4)−b(b4−c4)−b(a4−b4)+c(a4−b4)
=(b4−c4)(a−b)+(a4−b4)(c−b)
=(b2−c2)(b2+c2)(a−b)+(a2−b2)(a2+b2)(c−b)
=(b−c)(b+c)(b2+c2)(a−b)+(a−b)(a+b)(a2+b2)(c−b)
=(b−c)(a−b)((b+c)(b2+c2)−(a+b)(a2+b2))
=(b−c)(a−b)(b3+bc2+cb2+c3−a3−ab2−ba2−b3)
=(b−c)(a−b)(bc(c+b)−ab(a+b)+(c−a)(c2+a2+ac))
=(b−c)(a−b)(b(c2+cb−a2−ab)+(c−a)(c2+a2+ac))
=(b−c)(a−b)(b(c2−a2)+b2(c−a))+(c−a)(c2+a2+ac))
=(b−c)(a−b)(c−a)(b(c+a)+b2+c2+a2+ac)
=(b−c)(a−b)(c−a)(a2+b2+c2+ac+bc+ab)