let f(bc)=(bc+ca+ab)3−b3c3−c3a3−a3b3
f(−ac)=(−ac+ca+ab)3−(−ac)3−c3a3−a3b3
=a3b3+a3c3−a3c3−a3b3=0
If f(x) has f(−a)=0, then x+a is factor of f(x)
Therefore, we can say bc+ac is factor of f(bc).
Now, f(−ab)=(−ab+ac+ab)3−(−ab)3−c3a3−a3b3
=a3c3+a3b3−c3a3−a3b3=0
Therefore , we can say bc+ab is factor of f(bc).
Similarly, ab+ac is also factor.
Since it is a cubic equation, we can write it as
(bc+ca+ab)3−b3c3−c3a3−a3b3=k(bc+ac)(bc+ab)(ab+ac)=kabc(b+c)(c+a)(a+b)
Put a=1,b=2,c=3
(2×3+3×1+1×2)3−2333−3313−1323=k×1×2×3(2+3)(1+3)(1+2)
On simplification, we get
108=k(36)
k=10836=3
Thus, the factors are 3abc(b+c)(a+c)(a+b).