In order to find the factors of
(a+b+c)5−(b+c−a)5−(c+a−b)5−(a+b−c)5 we have to expand each term by binomial theorem
Let us consider
[(a+b+c)5−(b+c−a)5]−[(c+a−b)5+(a+b−c)5]
Expansion of each term separately,
(a+b+c)5= a5+5a4b+10a3b2+10a2b3+5ab4+b5+5a4c+20a3bc+30a2b2c+20ab3c+5b4c+10a3c2+30a2bc2
+30ab2c2+10b3c2+10a2c3+20abc3+10b2c3+5ac4+5bc4+c5
(b+c−a)5=−a5+5a4b+5a4c−10a3b2−20a3bc−10a3c2+10a2b3+30a2b2c+30a2bc2+10a2c3−5ab4−20ab3c−30ab2c2
−20abc3−5ac4+b5+5b4c+10b3c2+10b2c3+5bc4+c5
(c+a−b)5= a5−5a4b+5a4c+10a3b2−20a3bc+10a3c2−10a2b3+30a2b2c−30a2bc2+10a2c3+5ab4−20ab3c
+30ab2c2−20abc3+5ac4−b5+5b4c−10b3c2+10b2c3−5bc4+c5
(a+b−c)5= a5+5a4b−5a4c+10a3b2−20a3bc+10a3c2+10a2b3−30a2b2c+30a2bc2−10a2c3+5ab4−20ab3c
+30ab2c2−20abc3+5ac4+b5−5b4c+10b3c2−10b2c3+5bc4−c5
Now,
(a+b+c)5−(b+c−a)5= 2a5+20a3b2+40a3bc+20a3c2+10ab4+40ab3c+60ab2c2+40abc3+10ac4
(c+a−b)5+(a+b−c)5= 2a5+20a3b2−40a3bc+20a3c2+10ab4−40ab3c+60ab2c2−40abc3+10ac4
∴ [(a+b+c)5−(b+c−a)5]−[(c+a−b)5+(a+b−c)5]
= [2a5+20a3b2+40a3bc+20a3c2+10ab4+40ab3c+60ab2c2+40abc3+10ac4] −
[2a5+20a3b2−40a3bc+20a3c2+10ab4−40ab3c+60ab2c2−40abc3+10ac4]
= 80ab3c+80abc3+80a3bc
=80abc(a2+b2+c2)
∴ Factors of (a+b+c)5−(b+c−a)5−(c+a−b)5−(a+b−c)5 is 80abc(a2+b2+c2).