wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the factors of (a+b+c)5(b+ca)5(c+ab)5(a+bc)5.

Open in App
Solution

In order to find the factors of (a+b+c)5(b+ca)5(c+ab)5(a+bc)5 we have to expand each term by binomial theorem
Let us consider
[(a+b+c)5(b+ca)5][(c+ab)5+(a+bc)5]
Expansion of each term separately,
(a+b+c)5= a5+5a4b+10a3b2+10a2b3+5ab4+b5+5a4c+20a3bc+30a2b2c+20ab3c+5b4c+10a3c2+30a2bc2
+30ab2c2+10b3c2+10a2c3+20abc3+10b2c3+5ac4+5bc4+c5
(b+ca)5=a5+5a4b+5a4c10a3b220a3bc10a3c2+10a2b3+30a2b2c+30a2bc2+10a2c35ab420ab3c30ab2c2
20abc35ac4+b5+5b4c+10b3c2+10b2c3+5bc4+c5
(c+ab)5= a55a4b+5a4c+10a3b220a3bc+10a3c210a2b3+30a2b2c30a2bc2+10a2c3+5ab420ab3c
+30ab2c220abc3+5ac4b5+5b4c10b3c2+10b2c35bc4+c5

(a+bc)5= a5+5a4b5a4c+10a3b220a3bc+10a3c2+10a2b330a2b2c+30a2bc210a2c3+5ab420ab3c
+30ab2c220abc3+5ac4+b55b4c+10b3c210b2c3+5bc4c5
Now,
(a+b+c)5(b+ca)5= 2a5+20a3b2+40a3bc+20a3c2+10ab4+40ab3c+60ab2c2+40abc3+10ac4

(c+ab)5+(a+bc)5= 2a5+20a3b240a3bc+20a3c2+10ab440ab3c+60ab2c240abc3+10ac4

[(a+b+c)5(b+ca)5][(c+ab)5+(a+bc)5]
= [2a5+20a3b2+40a3bc+20a3c2+10ab4+40ab3c+60ab2c2+40abc3+10ac4]

[2a5+20a3b240a3bc+20a3c2+10ab440ab3c+60ab2c240abc3+10ac4]

= 80ab3c+80abc3+80a3bc

=80abc(a2+b2+c2)

Factors of (a+b+c)5(b+ca)5(c+ab)5(a+bc)5 is 80abc(a2+b2+c2).


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Introduction
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon