The correct option is B (x+4)3
p(x)=(x3+12x2+48x+64)
Using trial and error method,
when
x=−4p(−4)=(−4)3+12×(−4)2+48×(−4)+64) =−64+192−192+64=0
Hence, one factor = (x+4)
Using synthetic division,
x3x2x1x01124864−4↓−4−32−6411816|−0
∴p(x)=(x+4)(x2+8x+16)
Now, using trial and error method,
when,
x=−4q(x)=(x2+8x+16) =(−4)2+8×(−4)+16=0
Hence, another factor is (x+4)
x2x1x01816−4↓−4−1614|−0
∴p(x)=(x+4)(x+4)(x+4) =(x+4)3