Differentiating partially w.r.t. x and y we get,
∂f∂x=x+2y−1=0 and∂f∂x=2x+y+1=0
Hence, x=−1,y=1
∴ The center is (−1,1), and
c′=gx+fy+c
=1+1−6=−4
The equation referred to parallel axes through the center will be
x2+2xy+y2=4
Here, tan2θ=2ha−b=∞
∴2θ=90° or 270°
θ=45° or 135°
tanθ=±1
cosθ=1√2,sinθ=1√2
Now, r2=4(1+tan2θ)1+4tanθ+tan2θ=43 or −4
√r21−r22=43√3
So the co ordinates of the foci are
{x±√r21−r22cosθ,y±√r21−r22sinθ}
i.e., (−1±23√6,1+23√6)
and e2=α2−β2α2=4+4343=4
∴e=2