Find the following integrals.
If ddxf(x)=4x3−3x4 such that f(2)=0. Then f(x)is
(a)x4+1x3−1298(b)x3+1x4+1298(c)x4+1x3+1298(d)x3+1x4−1298
Given, ddxf(x)=4x3−3x4
⇒Anti−derivative of(4x3−3x4)=f(x)∴f(x)=∫(4x3−3x4)dx=4∫x3dx−3∫x−4dx⇒f(x)4(x44)−3(x−3−3)+C=x4+1x3+C
Also, f(2)=0,∴f(2)=(2)4+1(2)3+C
⇒16+18+C=0⇒C=−(16+18)⇒C=−1298
∴f(x)=x4+1x3−1298. Hence, the correct option is (a).