Find the following integrals.
∫x3+3x+4√xdx.
∫x3+3x+4√xdx=∫x3√xdx+3∫x√xdx+4∫1√xdx=∫x3×x−12dx+3∫x12dx+4∫x−12dx=∫x(6−1)2dx+3∫x12dx+4∫x−12dx=∫x52dx+3∫x12dx+4∫x−12dx=x52+1(52)+1+3x(12)+1(12)+1+4x(−12)+1(−12)+1+C(∴∫xndx=xn+1n+1)=x7272+3x3232+4x1212+C=27x72+2.x32+8x12+C