1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Vn Method
Find the foll...
Question
Find the following limit.
lim
n
→
∞
3
√
4
+
−
3
n
+
n
6
1
+
3
n
−
2
n
2
.
Open in App
Solution
lim
n
→
∞
3
√
4
−
3
n
+
n
6
1
+
3
n
+
2
n
2
=
lim
n
→
∞
(
n
6
)
1
/
3
(
3
√
4
n
6
−
3
n
5
+
1
)
n
2
(
1
n
2
+
3
n
−
2
)
⇒
lim
n
→
∞
n
2
(
3
√
4
n
6
−
3
n
5
+
1
)
n
2
(
1
n
2
+
3
n
−
2
)
=
lim
n
→
∞
3
√
4
n
6
−
3
n
5
+
1
1
n
2
+
3
n
−
2
=
−
1
2
.
Suggest Corrections
0
Similar questions
Q.
l
i
m
n
→
∞
n
(
(
2
n
+
1
)
2
)
(
n
+
2
)
(
n
2
+
3
n
−
1
)
=
Q.
Calculate the following limits.
lim
n
→
∞
5
n
+
1
+
3
n
−
2
2
n
5
n
+
2
n
+
3
n
+
2
,
n
ϵ
N
.
Q.
lim
n
→
∞
n
(
2
n
+
1
)
2
(
n
+
2
)
(
n
2
+
3
n
−
1
)
is equal to
Q.
Find the following limit.
lim
n
→
∞
2
n
2
+
n
+
1
(
n
+
1
)
+
(
n
+
2
)
+
.
.
.
+
2
n
.
Q.
l
i
m
n
→
∞
n
(
(
2
n
+
1
)
2
)
(
n
+
2
)
(
n
2
+
3
n
−
1
)
=