wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the following limit:
limx0sinxtanxsin3x.

Open in App
Solution

limx0sinxtanxsin3x

=limx0sinxsinxcosxsin3x=limx0sinx(11cosx)sin2x.sinx

[1cos2θ=2sin2θlimθ0sinθθ=1]=limx0cosx1cosx×1sin2x

=limx02sin2x2cosx×1sin2x

=2limx0⎜ ⎜ ⎜sin2x2x24⎟ ⎟ ⎟×x24×(x2sin2x)×1x2

=2×x24×1x2

=24=12.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Change of Variables
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon