Given,
(3x−4y+5z)(9x2+16y2+25z2+12xy−
15zx+20yz)
(3x−4y+5z)((3x)2+(−4y)2+(5z)2−3x×
(−4y)−(−4y)×5z−5z×3x
Using Identity,
a3+b3+c3−3abc
=(a+b+c)(a2+b2+c2−ab−bc−ac)
Comparing given equation with identity we get,
∴(3x)3+(−4y)3+(5z)3−3×3x×(−4y)×5z=
(3x−4y+5z)((3x)2+(−4y)2+(5z)2−3x×
(−4y)−(−4y)×5z−5z×3x)
∴(3x−4y+5z)(9x2+16y2+25z2+12xy−
15yz+20xz)
=27x3−64y3+125z3+180xyz