Prove that:(i) 13+√7+1√7+√5+1√5+√3+1√3+1=1(ii) 11+√2+1√2+√3+1√3+√4+1√4+√5+1√5+√6+1√6+√7+1√7+√8+1√8+√9=2
Re-arrange suitably and find the sum in each of the following :
(i)1112+−173+112+−252
(ii)−67+−56+−49+−157
(iii)35+73+95+−1315+−73
(iv) 413+−58+−813+913
(v)23+−45+13+25
(vi) 18+512+27+712+97+−516
Find each of the following products :
(i) 35×−78 (ii) −92×54 (iii) −611×−53
(iv) −23×67 (v) −125×10−3 (vi) 25−9×3−10
(vii) 5−18×−920 (viii) −1315×−2526 (ix) 16−21×145
(x) −76×24 (xi) 724×(−48) (xii) −135×(−10)