Given line is
x+35=y−12=z+43=r (say) ..........(i)
And point P(0,2,3)
Co-ordinates of any point on (i) may be taken as, (5r−3,2r+1,3r−4)
Let, Q=(5r−3,2r+1,3r−4)
Direction ratio's of PQ are (5r−3,2r−1,3r−7)
Direction ratio's of AB are (0,2,3)
Since, PQ⊥AB
∴0(5r−3)+2(2r−1)+3(3r−7)=0
⟹4r−2+9r−21=0
⟹13r=23
⟹r=2313
∴Q=(5r−3,2r+1,3r−4)
⟹Q=(11513−3,4613+1,6913−4)
⟹Q=(7613,5913,1713)
Now, Length of perpendicular PQ=√(0−7613)2+(2−5913)2+(3−1713)2
=√5776169+1089169+484169
=√7349169
=√734913 Units