wiz-icon
MyQuestionIcon
MyQuestionIcon
2
You visited us 2 times! Enjoying our articles? Unlock Full Access!
Question

Find the four angles of a cyclic quadrilateral ABCD in which
A=(x+y+10)°,B=(y+20)°,C=(x+y-30)° and D=(x+y)°.

Open in App
Solution

Given:
In a cyclic quadrilateral ABCD​, we have:
A=x+y+10°
B=y+20°
C=x+y-30°
D=x+y°
A+C=180° and B+D=180° [Since ABCD is a cyclic quadrilateral]
Now, A+C=x+y+10°+x+y-30°=180°
⇒ 2x + 2y − 20 = 180
⇒ x + y − 10 = 90
⇒ x + y = 100 ....(i)
Also, B+D=y+20°+x+y°=180°
⇒ x + 2y + 20 = 180
⇒ x + 2y = 160 ....(ii)
On subtracting (i) from (ii), we get:
y = (160 − 100) = 60
On substituting y = 60 in (i), we get:
x + 60 = 100
⇒ x = (100 − 60) = 40
Therefore, we have:
A=x+y+10°=40+60+10°=110°
B=y+20°=60+20°=80°
C=x+y-30°=40+60-30°=70°
D=x+y°=40+60°=100°

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Circles and Quadrilaterals - Theorem 9
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon