Find the four numbers in AP whose sum is 50 and in which the greatest number is 4 times the least .
Let the 4 numbers be
a−3d,a−d,a+d,a+3d
then
⇒ a−3d+a−d+a+d+a+3d=50
⇒ 4a=50
∴ a=252
And,
⇒ a+3d=4(a−3d)
⇒ a+3d=4a−12d
⇒ 3a=15d
⇒ a=5d
⇒ d=a5
∴ d=2510
So the four numbers are
a−3d=252−3×2510=5
a−d=252−2510=10
a+d=252+2510=15
a+3d=252+3×2510=20
Hence, four numbers are 5,10,15,20 .