Find the general solution for the following equation:
sin 2x + cos x = 0
sin 2x + cos x = 0
⇒ 2 sin x cos x + cos x = 0
⇒ cos x (2 sin x + 1) = 0
⇒ Either cos x = 0 or 2sin x + 1 = 0
⇒ x = (2n + 1) π2
or sin x = -12 = - sin π6 = sin (−π6), n ϵ Z
x = (2n+1) π2 or x = nπ+(−1)n(−π6)
x = (2n+1) π2 or x = nπ+(−1)n+1(π6)
or x = nπ+(−1)n7π6
[∵sin(π+π6)=−sinπ6]
⇒ x = (2n+1) π2 or x = nπ+(−1)n7π6, n ϵ Z