Find the general solution of: 2cos2x+3sinx=0.
Given:
2cos2x+3sinx=0
Use the formula: cos2x=(1−sin2x)
2(1−sin2x)+3sinx=0
2−2sin2x+3sinx=0
2sin2x−3sinx−2=0
2sin2x−4sinx+sinx−2=0
2sinx(sinx−2)+1(sinx−2)=0
(sinx−2)(2sinx+1)=0
sinx−2=0or2sinx+1=0
sinx=2orsinx=−1/2
The value of sinx will never be 2.
sinx=−1/2=sin(−π6)
x=nπ+(−1)n(−π6)
x=nπ+(−1)n+1(π6)
Thus, the value of x is nπ−(−1)n(π6).