wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the general solution of differential equation.
sinxdydx+3y=cosx

A
(13+y)tan3x2=c+2tanx2x
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
(13y)cot3x2=c+2cotx2x
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
(13y)tan3x2=c+2tanx2+x
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
(13+y)cot3x2=c+2cotx2+x
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is A (13+y)tan3x2=c+2tanx2x
sinxdydx+3y=cosx
dydx+3ysinx=cotx
which is a linear differential equation
Here, P=3cosecx,Q=cotx
Integrating factor I.F.=ePdx
=e3cosecxdx
=e3logtanx2
I.F.=tan3x2
Solution of given differential eqn is given by
ytan3x2=tan3x2tanxdx+C
ytan3x2=12tan2x2(1tan2x2)dx+C
ytan3x2=12tan2x2dx12tan2x2tan2x2dx+C
ytan3x2=12tan2x2dx12tan2x2(sec2x21)dx+C
ytan3x2=12tan2x2dx12tan2x2sec2x2dx+12tan2x2dx+C
ytan3x2=tan2x2dx12tan2x2sec2x2dx+C
Substitute tanx2=t
12sec2x2dx=dt
ytan3x2=(sec2x21)dxt2dt+C
ytan3x2=2tanx2x13tan3x2+C
(y+13)tan3x2=2tanx2x+C

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Methods of Solving First Order, First Degree Differential Equations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon