The correct option is A (13+y)tan3x2=c+2tanx2−x
sinxdydx+3y=cosx
⇒dydx+3ysinx=cotx
which is a linear differential equation
Here, P=3cosecx,Q=cotx
Integrating factor I.F.=e∫Pdx
=e∫3cosecxdx
=e3logtanx2
⇒I.F.=tan3x2
Solution of given differential eqn is given by
ytan3x2=∫tan3x2tanxdx+C
ytan3x2=12∫tan2x2(1−tan2x2)dx+C
⇒ytan3x2=12∫tan2x2dx−12∫tan2x2tan2x2dx+C
⇒ytan3x2=12∫tan2x2dx−12∫tan2x2(sec2x2−1)dx+C
⇒ytan3x2=12∫tan2x2dx−12∫tan2x2sec2x2dx+12∫tan2x2dx+C
ytan3x2=∫tan2x2dx−12∫tan2x2sec2x2dx+C
Substitute tanx2=t
⇒12sec2x2dx=dt
⇒ytan3x2=∫(sec2x2−1)dx−∫t2dt+C
⇒ytan3x2=2tanx2−x−13tan3x2+C
⇒(y+13)tan3x2=2tanx2−x+C