Find the general solution of 1+sin3x+cos3x=32sin2x
1+sin3x+cos3x=3sin(x).cos(x).1
Hence
a3+b3+c3=3abc ...(i)
Now
a3+b3+c3=(a+b+c)(a2+b2+c2−ab−bc−ac)+3abc
...(ii)
Comparing i and ii, we get
(a+b+c)(a2+b2+c2−ab−bc−ac)=0
Or
a+b+c=0
That implies
1+sin(x)+cos(x)=0
Or
2cos2(x2)+2sinx2.cosx2=0
2cos(x2)[sinx2+cosx2]=0
Hence
cos(x2)=0 and sinx2+cosx2=0
x2=(2n+1)π2
x=(2n+1)π ...(b) and
sinx2+cosx2=0
√2cos(x2−π4)=0
x2−π4=(2n+1)π2
x=(2n+1)π+π2. ..(a)
Hence from a and b
x=2nπ±3π4+π4.