∵secθ+1=(2+√3)tanθ
On squaring both sides, we get
(secθ+1)2=(2+√3)2tan2θ
⇒(secθ+1)2=(4+3+4√3)(sec2θ−1)
⇒(secθ+1){(secθ+1)−(7+4√3)(secθ−1)}=0
⇒(secθ+1){(8+4√3)−(6+4√3)secθ}=0
⇒(secθ+1)=0
or (8+4√3)−(6+4√3)secθ=0
⇒cosθ=−1=cosπ
⇒θ=2nπ±π
Now, If (8+4√3)−(6+4√3)secθ=0
⇒cosθ=√32=cosπ6
⇒θ=2nπ±π6
But θ=2nπ−π6 does not satisfying the given equation.
∴θ=2nπ±π,2nπ+π6,n∈1