Find the general solution of each equation:
(i)√3cot x+1=0
(ii)cosec x+√2=0
(i)√3 cot x+1=0
⇒cot x=−1√3
⇒tanx=−√3=−tanπ3=tan(π−π3)=tan2π3
⇒tanx=tan2π3
⇒x=(nπ+2π3), where n∈I.
Hence, the general solution is x=(nπ+2π3), where n∈I.
(ii)cosec x+√2=0
⇒sinx=−1√2=−sinπ4=sin(π+π4)=sin5π4
⇒ sin x=sin 5π4
⇒x={nπ+(−1)n.5π4}, where n∈I.
Hence, the general solution is x={nπ+(−1)n.5π4}, where n∈I.