Find the general solution of each of the equations:
(i)sin 2x=−12
(ii)tan 3x =-1
(i)sin 2x=−12=−sin π6=sin (π+π6)=sin 7π6
⇒sin 2x=sin 7π6
⇒2x={nπ+(−1)n.7π6}, where n∈I
⇒x={nπ2+(−1)n.7π12}, where n∈I.
Hence, the general solution is x={nπ2+(−1)n.7π12}, where n∈I.
(ii)tan 3x=−1=−tan π4=tan (π−π4)=tan 3π4
⇒tan 3x=tan 3π4
⇒sin 4x=0 or cos 2x=cos 2π3
⇒4x=nπ or 2x=(2mπ±2π3), where m, n∈I.
⇒x=nπ4 or x=(mπ±π3)m where m, n∈I.
Hence, the general solution is given by x=nπ4 or x=(mπ±π3), where m, n∈I.