wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the general solution of each of the equations:

(i)sin 2x=12

(ii)tan 3x =-1

Open in App
Solution

(i)sin 2x=12=sin π6=sin (π+π6)=sin 7π6

sin 2x=sin 7π6

2x={nπ+(1)n.7π6}, where nI

x={nπ2+(1)n.7π12}, where nI.

Hence, the general solution is x={nπ2+(1)n.7π12}, where nI.

(ii)tan 3x=1=tan π4=tan (ππ4)=tan 3π4

tan 3x=tan 3π4

sin 4x=0 or cos 2x=cos 2π3

4x=nπ or 2x=(2mπ±2π3), where m, nI.

x=nπ4 or x=(mπ±π3)m where m, nI.

Hence, the general solution is given by x=nπ4 or x=(mπ±π3), where m, nI.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
General Solutions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon