The correct option is B xcoty=logtany+C
(x+tany)dy=sin2ydx
It can be written as
dxdy=xsin2y+tanysin2y
dxdy−xsin2y=1+tan2y2
which is a linear differential with x as dependent variable.
Here, P=−1sin2y=−cosec2y ; Q=1+tan2y2
Integrating factor I.F.=e∫Pdy
=e∫−cosec2ydy
=e−logtany
⇒I.F.=1tany=coty
Solution of given differential eqn is
xcoty=∫1+tan2y2tanydy+C
⇒xcoty=∫cosec2ydy+C
⇒xcoty=logtany+C