wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the general solution of sinx+sin3x+sin5x=0

Open in App
Solution

We have, sinx+sin3x+sin5x=0
(sinx+sin5x)+sin3x=0
2sin(x+5x2)cos(5xx2)+sin3x=0
2sin3xcos2x+sin3x=0
sin3x(2cos2x+1)=0
Either sin3x=0 or 2cos2x+1=0
i.e. sin3x=0 or cos2x=12

Now, cos2x=cosπ3
cos2x=cos(ππ3)
cos2x=cos2π3

sin3x=0 or cos2x=cos2π3
3x=nπ,nZ or 2x=2mπ±2π3 where mZ
Hence, x=nπ3 or x=mπ±π3, where n,mZ.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
General Solutions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon