Here (1+tan y)(dx−dy)+2xdy=0 ⇒(1+tan y)dx−(1+tan y)dy+2xdy=0
⇒dxdy−1+tan y−2x1+tan y=0 ⇒dxdy+(21+tan y)x=1
Clearly it is in the form of dxdy+P(y)x=Q(y) where P(y)=21+tan y,Q(y)=1
I.F.=e∫P(y)dy=e∫21+tan ydy=e∫(cos y+sin y)+(−sin y+cos y)cos y+sin ydy=e∫(1+−sin y+cos ycos y+sin y)dy
⇒ =ey+log(cos y+sin y)=ey×elog(cos y+sin y)=ey(cos y+sin y)
Therefore, the solution is given by x(I.F.)=∫(I.F.)×Q(y)dy+C
∴xey(cos y+sin y)=∫ ey(cos y+sin y)×1dy+C
⇒ xey(cos y+sin y)=ey sin y+C.
OR We have(1+exy)dx+exy(1−xy)dy=0 ⇒(1+exy)dx=exy(xy−1)dy
⇒dxdy=exy(xy−1)(1+exy)=f(xy) say
Put x=λx, y=λy then, f(λxλy)=eλxλy(λxλy−1)⎛⎝1+eλxλy⎞⎠=exy(xy−1)(1+exy)=f(xy)
Hence the diff. eq. is homogeneous.
To solve, let x=vy⇒dxdy=v+ydvdy
∴v+ydvdy=ev(v−1)(1+ev) ⇒ydvdy=vev−ev−v−vev(1+ev)=−ev−v(1+ev)
⇒1+evv+evdv=−dyy ⇒log|v+ev|=−log|y|+log C
⇒log|(v+ev)y|=log C ⇒(v+ev)y=±C
∴ (xy+ex/y)y=A, where A=±C.