Find the general solution of the differential equation (1+x2)dy+2xydx=cot x dx(x≠0)
Given differential equation :
(1+x2)dy+2xydx=cot x dx
(1+x2)dydx+2xydx=cot x
dydx+2x(1+x2) y=cot x(1+x2)
Given differential equation is of the form
dydx+Py=Q
By comparing both the equations, we get
P=2x(1+x2) y and Q=cot x(1+x2)
The general solution of the given differential equation is
y(I.F)=∫(Q×I.F.)dx+c ....(i)
Firstly, we need to find I.F.
I.F.=e∫pdx
I.F.=e∫2x(1+x2) y dx
Let 1+x2=t
dt=2xdx
I.F.=e∫dtt
I.F.=elog t (∵elog x=x)
I.F.=t
Substituting t=(1+x2), we get
I.F.=(1+x2)
Substituting the value of I.F in (i), we get
y(1+x2)=∫cot x(1+x2).(1+x2)dx+c
y(1+x2)=∫cot x dx+c
y(1+x2)=log |sin x|+c
∴y=(1+x2)−1log |sin x|+c(1+x2)−1