wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the general solution of the differential equation dydx+y.cotx=2x+x2.cotx.

Open in App
Solution

dydx+ycotx=2x+x2cotx

is of the form dydx+Py=Q where P=cotx and Q=2x+x2cotx

I.F=ep.dx=ecotxdx=elogsinx=sinx since elogx=x

Solution is y×I.F=Q×I.Fdx+c

ysinx=(2xsinx+x2cotxsinx)dx

ysinx=2xsinxdx+x2cosxdx

Consider x2cosxdx

Take u=x2du=2xdx and dv=cosxdxv=sinx

x2cosxdx=x2sinx2xsinxdx

ysinx=2xsinxdx+x2sinx2xsinxdx

ysinx=x2sinx+c where c is the constant of integration.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Definition of Function
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon