wiz-icon
MyQuestionIcon
MyQuestionIcon
2
You visited us 2 times! Enjoying our articles? Unlock Full Access!
Question

Find the general solution of the differential equation (1+y2)+(xetan1y)dydx=0

Open in App
Solution

Given,

(1+y2)(xetan1y)dydx=0

(1+y2)=(etan1yx)dydx

11+y2=1etan1yxdxdy

etan1y1+y2x1+y2=dxdy

x×I.F=Q×I.Fdy

I.F=e11+y2dy=etan1y

x×etan1y=etan1y1+y2etan1ydy

substitute tan1y=t

xet=et×etdt

xet=e2tdt

xet=e2t2+c

x=et2+cet

x=etan1y2+cetan1y

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Methods of Solving First Order, First Degree Differential Equations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon