Given differential equation :
xdydx+2y=x2log x
dydx+2yx=x log x
Given differential equation is of the form
dydx+Py=Q
By comparing both the equations, we get
P=2x and Q=x log x
The general solution of the given differential equation is
y(I.F)=∫(Q×I.F.)dx+c ....(i)
Firstly, we need to find I.F.
I.F.=e∫pdx
I.F.=e∫2x dx
I.F.=e2log x
I.F.=x2 (∵elog x=x)
Substituting the value of I.F in (i), we get
y×x2=∫x log x.x2dx+c
yx2=∫x3.log x dx+c ........(ii)
Using Integration by parts :
∫f(x)g(x)dx=f(x)∫g(x)dx−∫[f′(x)∫g(x)dx]dx
Taking f(x)=log x and g(x)=x3
yx2=log x∫x3dx−∫[ddxlog x∫x3]dx
yx2=log x(x44)−∫1x(x44)dx+c
yx2=log x(x44)−∫(x34)dx+c
yx2=x4log x4−x44×4+c
yx2=x4log x4−x416+c
y=4x2log x16−x216+cx−2
∴y=x216(4 log x−1)+cx−2