wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the general solution of the differential equation xdydx+yx+xy cot x=0 (x0)

Open in App
Solution

Given differential equation :

xdydx+yx+xy cot x=0

dydx+yx1+y cot x=0

dydx+y(1x+cot x)1=0

dydx+(1x+cot x)y=1

Given differential equation is of the form
dydx+Py=Q

By comparing both the equations, we get

P=(1x+cot x) and Q=1

The general solution of the given differential equation is

y(I.F)=(Q×I.F.)dx+c ....(i)

Firstly, we need to find I.F.

I.F.=epdx

I.F.=e1x+cot xdx

I.F.=elog x+log sin x

I.F.=elog(x sin x) (log a+log b=log ab)

I.F.=x sin x (elog x=x)

Substituting the value of I.F in (i), we get

y.x sin x=1.x sin x dx+c

Using Integration by parts :
f(x)g(x)dx=f(x)g(x)dxf[f(x)g(x)dx]dx

Taking f(x)=x and g(x)=sin x

y x sin x=xsin x dx[1.sin x.dx]dx+c

y x sin x=x(cos x)1.(cos x)dx+c

y x sin x=x cos x+cos x dx+c

y x sin x=x cos x+sin x+c

y=x cos xx sin x+sin xx sin x+cx sin x

y=cot x+1x+cx sin x
Hence, the required general solution is
y=cot x+1x+cx sin x


y=(1+x2)1log |sin x|+c(1+x2)1


flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon