We have,
xdydx+2y=x2logx
dydx+2yx=x2logxx
dydx+2yx=xlogx
Comparing this equation
dydx+Py=Q
Then, P=2x,Q=xlogx
I.F.=e∫Pdx
=e∫2xdx
=e2logx
=elogx2∴elogx=x
=x2
Then, Complete solution is
yI.F.=∫I.F.Qdx+C
yx2=∫x2.xlogxdx+C
yx2=∫x3logxdx+C
Now,
∫x3logxdx=logx∫x3dx−∫(dlogxdxx3dx)dx+C
=x4logx4−∫x2dx+C
=x4logx4−x33+C
yx2 = x4logx4−x33+C
y= xlogx4−x3+C