Given differential equation :
x log xdydx+y=2x log x
dydx+yx log x=2xlog x×1x log x
dydx+(1x log x)=2x2
Given differential equation is of the form
dydx+Py=Q
By comparing both the equations, we get
P=(1x log x) and Q=2x2
The general solution of the given differential equation is
y(I.F)=∫(Q×I.F.)dx+c ....(i)
Firstly, we need to find I.F.
I.F.=e∫pdx
I.F.=e∫1x log x dx
Let log x=t
dx=xdt
I.F.=e∫1xt×xdt
I.F.=e∫1tdt
I.F.=elog |t|
I.F.=|t|
Substituting t=log x, we get
I.F.=log x
Substituting the value of I.F in (i), we get
ylog x=∫2x2.log x.dx+c........(ii)
ylog x=2∫log x.x−2dx+c
Using Integration by parts :
∫f(x)g(x)dx=f(x)∫g(x)dx−∫[f′(x)∫g(x)dx]dx
Taking f(x)=log x and g(x)=x−2
y log x=2[log x∫x−2dx−∫1x[x−2dx]dx]
y log x=2[log xx−1(−1)−∫1x.(x−1)(−1)dx]
y log x=2[−log xx+∫1x2.dx]
y log x=2[−log xx−1x]
∴y log y=−2x(1+log x−1)+c