wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the general solution of the differential equation x log xdydx+y=2x log x

Open in App
Solution

Given differential equation :

x log xdydx+y=2x log x

dydx+yx log x=2xlog x×1x log x

dydx+(1x log x)=2x2

Given differential equation is of the form
dydx+Py=Q

By comparing both the equations, we get

P=(1x log x) and Q=2x2

The general solution of the given differential equation is

y(I.F)=(Q×I.F.)dx+c ....(i)

Firstly, we need to find I.F.

I.F.=epdx

I.F.=e1x log x dx

Let log x=t
dx=xdt

I.F.=e1xt×xdt

I.F.=e1tdt

I.F.=elog |t|

I.F.=|t|

Substituting t=log x, we get

I.F.=log x

Substituting the value of I.F in (i), we get

ylog x=2x2.log x.dx+c........(ii)

ylog x=2log x.x2dx+c

Using Integration by parts :

f(x)g(x)dx=f(x)g(x)dx[f(x)g(x)dx]dx

Taking f(x)=log x and g(x)=x2

y log x=2[log xx2dx1x[x2dx]dx]

y log x=2[log xx1(1)1x.(x1)(1)dx]

y log x=2[log xx+1x2.dx]

y log x=2[log xx1x]

y log y=2x(1+log x1)+c


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon