2(sinx−cos2x)−sin2x(1+2sinx)+2cosx=0⇒2(sinx−cos2x)−sin2x(1+2sinx)+2cosx=0
⇒sinx−cos2x−sinxcosx−sin2xcosx+cosx=0
⇒sinx−(1−sin2x)−sinxcosx−sin2xcosx+cosx=0
⇒sinx−1+2sin2x−sinxcosx−sin2xcosx+cosx=0
{∵cos2x=1−2sin2x&sin2x=2sinxcosx}
⇒sinx−sinxcosx+2sin2x−sin2xcosx+cosx−1=0
⇒sinx(1−cosx)+2sin2x(1−cosx)−(1−cosx)=0
⇒(1−cosx)[2sin2x+sinx−1]=0
⇒1−cosx=0 or 2sin2x+sinx−1=0
now,
2sin2x+sinx−1=0
sinx=[−1+√1−4(2)(−1)]2×2
sinx=−1 and 1/2
general solution for
cosx=1⇒x=2nπ,n∈z→(1)
sinx=−1 and ⇒x=mπ+(−1)mπ/2,n∈z→(2)
sinx=1/2⇒x=pπ+(−1)2π/6,p∈I→(3)
(1)∩(2)∩(3)
will be answer
general solution =(2nπ)∩(mπ+(−1)mπ/2)∩(pπ+(−1)2π/6)