wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the general solution of the equation 2(sinxcos2x)sin2x(1+2sinx)+2cosx=0

Open in App
Solution

2(sinxcos2x)sin2x(1+2sinx)+2cosx=0
2(sinxcos2x)sin2x(1+2sinx)+2cosx=0
sinxcos2xsinxcosxsin2xcosx+cosx=0
sinx(1sin2x)sinxcosxsin2xcosx+cosx=0
sinx1+2sin2xsinxcosxsin2xcosx+cosx=0
{cos2x=12sin2x&sin2x=2sinxcosx}
sinxsinxcosx+2sin2xsin2xcosx+cosx1=0
sinx(1cosx)+2sin2x(1cosx)(1cosx)=0
(1cosx)[2sin2x+sinx1]=0
1cosx=0 or 2sin2x+sinx1=0
now,
2sin2x+sinx1=0
sinx=[1+14(2)(1)]2×2
sinx=1 and 1/2
general solution for
cosx=1x=2nπ,nz(1)
sinx=1 and x=mπ+(1)mπ/2,nz(2)
sinx=1/2x=pπ+(1)2π/6,pI(3)
(1)(2)(3)
will be answer
general solution =(2nπ)(mπ+(1)mπ/2)(pπ+(1)2π/6)

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Angle and Its Measurement
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon