wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the general solution of the equation:
4 sin x cos x + 2 sin x + 2 cos x + 1 = 0

Open in App
Solution

Given,

4 sin x cos x+2sin x+2 cos+1=0

2 sin x(2 cos+1)+(2 cos x+1)=0

(2 sin x + 1)(2 cos x + 1)=0

Either 2 sin x +1=0 or 2 cos x +1=0

sin x=12 or cos x=12

Now, if sin x=(12)sin x=sin(π+π6)=sin7π6

The general solution of this equation is:

x=nx+(1)n(7π6) ...(i)

and if cos x=12cos x=cos(ππ3)=cos2π3

The general solution of this equation is

x=2nπ±2π3

x=2π(n±13)

x=nπ+(1)n7π6 and x=2nπ±2π3


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
General Solutions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon