Find the general solution of the equation:
4 sin x cos x + 2 sin x + 2 cos x + 1 = 0
Given,
4 sin x cos x+2sin x+2 cos+1=0
⇒2 sin x(2 cos+1)+(2 cos x+1)=0
⇒(2 sin x + 1)(2 cos x + 1)=0
Either 2 sin x +1=0 or 2 cos x +1=0
⇒ sin x=−12 or cos x=−12
Now, if sin x=(−12)⇒sin x=sin(π+π6)=sin7π6
The general solution of this equation is:
x=nx+(−1)n(7π6) ...(i)
and if cos x=−12⇒cos x=cos(π−π3)=cos2π3
The general solution of this equation is
x=2nπ±2π3
⇒x=2π(n±13)
x=nπ+(−1)n7π6 and x=2nπ±2π3