Step 1: Simplification
Given: sec22x=1−tan2x
⇒1+tan2x=1−tan2x
⇒tan22x+tan2x=0
⇒tan2x(tan2x+1)=0
⇒tan2x=0 or tan2x+1=0
⇒tan2x=0 or tan 2x=−1
We find the general solution for both equations separately.
Step 2:
General solution for tan2x=0
tan2x=0
⇒tan2x=tan0
General solution is 2x=nπ+0
⇒x=nπ2
Step 3:
General solution for tan 2x=−1
tan2x=−1
⇒tan2x=tan3π4
General solution is 2x=nπ+3π4,n∈Z
x=nπ2+3π8, where n∈Z