wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the general solution of the equation sin6x=sin4xsin2x

Open in App
Solution

We have, sin6x=sin4xsin2x

2sin3xcos3x=2cos(4x+2x2)sin(4x2x2)

2sin3xcos3x=2cos3xsinx

2cos3x(sin3xsinx)=0

cos3x=0,sin3x=sinx

When cos3x=0

3x=(2n+1)π2

x=(2n+1)π6

When sin3x=sinx

3x=nπ+(1)nx

When n is even,x=nπ

When n is odd,x=(2n+1)π4

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 2
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon