Simplification
Given: sinx+sin3x+sin5x=0
⇒(sinx+sin5x)+sin3x=0
⇒2sin(5x+x2)cos(x−5x2)+sin3x=0
⇒2sin(6x2)cos(−4x2)+sin3x=0
⇒2sin3x⋅cos2x+sin3x=0
⇒sin3x(2cos2x+1)=0
sin3x=0 or 2cos2x+1=0
sin3x=0 or cos2x=−12
General solution for sin3x=0
sin3x=0
General solution is 3x=nπ,n∈Z
x=nπ3 where n∈Z
General solution for cos2x=−12
cos2x=−12
⇒cos2x=cos(2π3)
We know that general solution for cosx=cosy is x=2nπ±y,n∈Z
So, the general solution is 2x=2nπ±2π3,n∈Z
x=nπ±π3 where n∈Z