The correct options are
C y−1ex=c−x2
D ex=y(c−x2)
2xy2+exy=exdydx
⇒2xe−xy2+y=dydx
⇒dydx−y=2xe−xy2
⇒y−2.dydx−y−1=2xe−x
Let 1y=t
−1y2.dy=dt
Hence
dydx=−y2.dtdx
Substituting in the above action, we get
−dtdx−t=2xe−x
⇒dtdx+t=−2xe−x
IF=e∫1.dx
=ex
Hence
t.ex=∫−2x.dx
⇒tex=−x2+c
⇒exy=−x2+c
⇒ex=y(−x2+c).