wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the general solution of the following equations:
2(sinxcos2x)sin2x(1+2sinx)+2cosx=0

Open in App
Solution

2(sinxcos2x)sin2x(1+2sinx)+2cosx=0
Simplyfing & expanding
sinxcos2xsinxcosxsin2xcosx+cosx=0
sinx(12sin2x)sinxcosxsin2xcosx+cosx=0
[cos2x=1sin2x,sin2x=2sinxcosx]
sinx1+2sin2xsinxcosxsin2xcosx+cosx=0
sinxsinxcosx+2sin2xsin22xcosx+cosx1=0
sinx(1cosx)+2sin2x(1cosx)(1cosx)=0
(1cosx)(2sin2x+sinx1)=0
cosx=1 or 2sin2x+sinx1=0
(sinx+1)(sinx12)=0
cosx=1x=2nπ
sinx=1x=nπ+(1)n3π2nI
sinx=12x=nπ+(1)nπ6nI.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon