wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the general solution of the following equations :
(i) 2cos2θ5cosθ+2=0
(ii) 4cos2θ4sinθ=1
(iii) 2sin2θ+3cosθ=0
(iv) tan2θ4secθ+5=0

Open in App
Solution

i) 2cos2θ5cosθ+2=0
2cos2θ+4cosθcosθ+2=0
(2cosθ1)(cosθ2)=0
cosθ=1/2(1) or cosθ=2(2)
Now if cosθ=cosα cosθ=2 is not possible
when general solution is cosθϵ[1,1]
θ=2nπ±α
cosθ=1/2=cosπ/3
θ=2nπ±π/3
nϵZ
ii) 4cos2θ4sinθ=1
4(1sin2θ)4sinθ=1 (sin2θ+cos2θ=1)
44sin2θ4sinθ=1
4sin2θ+4sinθ3=0
4sin2θ+6sinθ2sinθ3=0
2sinθ(2sinθ+3)1(2sinθ+3)=0
(2sinθ1)(2sinθ+3)
sinθ=1/2(1) or sinθ=3/2(2)
if sinx=siny but sinθ=3/2 is
the x=nπ+(1)ny;nϵZ not possible since
sinθ=1/2=sinπ/6 sinθϵ[1,1]
θ=nπ+(1)nπ/6
iii) 2sin2θ+3cosθ=0
2cos2θ3cosθ2=0
2cos2θ4cosθ+cosθ2=0
(2cosθ+1)(cosθ2)=0
cosθ=1/2 or cosθ=2
θ=2nπ±(π/3) cosθ=2 is not possible
iv) tan2θ4secθ+5=0 cosθϵ[1,1]
sec2θ4secθ+4=0
(secθ2)2=0
secθ=2cosθ=1/2
general solution : θ=2nπ±π/3

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
General Solutions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon