i) 2cos2θ−5cosθ+2=0
⇒2cos2θ+4cosθ−cosθ+2=0
⇒(2cosθ−1)(cosθ−2)=0
∴ cosθ=1/2⟶(1) or cosθ=2⟶(2)
Now if cosθ=cosα cosθ=2 is not possible
when general solution is ∵ cosθϵ[−1,1]
θ=2nπ±α
∴ cosθ=1/2=cosπ/3
θ=2nπ±π/3
nϵZ
ii) 4cos2θ−4sinθ=1
⇒4(1−sin2θ)−4sinθ=1 (∵sin2θ+cos2θ=1)
⇒4−4sin2θ−4sinθ=1
⇒4sin2θ+4sinθ−3=0
⇒4sin2θ+6sinθ−2sinθ−3=0
⇒2sinθ(2sinθ+3)−1(2sinθ+3)=0
⇒(2sinθ−1)(2sinθ+3)
sinθ=1/2⟶(1) or sinθ=−3/2⟶(2)
if sinx=siny but sinθ=−3/2 is
the x=nπ+(−1)ny;nϵZ not possible since
∴ sinθ=1/2=sinπ/6 sinθϵ[−1,1]
∴ θ=nπ+(−1)nπ/6
iii) 2sin2θ+3cosθ=0
⇒2cos2θ−3cosθ−2=0
⇒2cos2θ−4cosθ+cosθ−2=0
⇒(2cosθ+1)(cosθ−2)=0
∴ cosθ=−1/2 or cosθ=2
θ=2nπ±(−π/3) cosθ=2 is not possible
iv) tan2θ−4secθ+5=0 ∵ cosθϵ[−1,1]
⇒sec2θ−4secθ+4=0
⇒(secθ−2)2=0
⇒secθ=2⇒cosθ=1/2
∴ general solution : θ=2nπ±π/3