Given trigonometric equation as:
5cos2θ+2cos2θ2+1=0
To make the arguments uniform, apply
cos2θ=2cos2θ−1 and
cosθ=2cos2θ2−1
The original equation transforms to
⇒5(2cos2θ−1)+(cosθ+1)+1=0
⇒10cos2θ−5+cosθ+2=0
⇒10cos2θ+cosθ−3=0
This is a quadratic equation in cosθ.
⇒10cos2θ+(6−5)cosθ−3=0
⇒10cos2θ+6cosθ−5cosθ−3=0
⇒2cosθ(5cosθ+3)−(5cosθ+3)=0
⇒(2cosθ−1)(5cosθ+3)=0
⇒2cosθ−1=0 or 5cosθ+3=0.
For the first case:
cosθ=12=cosπ3.
⇒θ=2nπ±π3,n∈Z⋯(A)
For the second case:
cosθ=−35<0
∴ There exist an angle α such that cosα=−35.
⇒cosθ=cosα is θ=2nπ±α,n∈Z⋯(B)
The complete general solution is A∪B.
⇒θ∈{2nπ±π3}⋃{2nπ±α},n∈Z, where cosα=−35.