The correct option is A x∈[nπ+π6,nπ+π3]∪[nπ+2π3,nπ+5π6],n∈I
√16cos4x−8cos2x+1+√16cos4x−24cos2x+9=2√(4cos2x−1)2+√(4cos2x−3)2=2|4cos2x−1|+|4cos2x−3|=2Case−I:Ifcos2x<14,then,1−4cos2x+3−4cos2x=2⇒8cos2x=2cos2x=14(rejected)Case−II:If,14≤cos2x≤34then,4cos2x−1+3−4cos2x=22=2,cosxϵ[−√32,−12]U[12,√32]⇒xϵ[nπ+π6,nπ+π3]U[nπ+2π3,nπ+5π6]nϵICase−III:If,cos2x>34,then,4cos2x−1+4cos2x−3=2cos2x=34(rejected)