wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the general solution of y2dx+(x2xy+y2)dy=0.

Open in App
Solution

y2dx+(x2xy+y2)dy=0
dydx=y2x2xy+y2
dydx=(y/x)21(y/x)+(y/x)2
Momogeneous equation,
Let yx=vy=vx
dydx=ddx(vx)
dydx=v+xdvdx
v+xdvdx=v21v+v2
xdvdx=v21v+v2v
v2v(1v+v2)1v+v2
=v2v+v2v31v+v2=v(1+v2)1v+v2
xdvdx=v(1+v2)1v+v2
dxx=(1v+v2)v(1+v2)dv
dxx=vv(1+v2)dv+(1+v2)dvv(1+v2)
integrating
lnx=tan1v+lnv+c
lnv+lnxtan1v=c
lnvxtan1v=c
lnytan1yx=c [by placing v=yx]

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Basic Theorems in Differentiation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon