Find the general solutions of 3tan2x−1=0
x=nπ+π6
x=nπ−π6
x=nπ+π3
x=nπ−π3
3tan2x−1=0tan2x=13tan x=±1√3x=nπ+π6 or nπ−π6
Solve the equation: √(116+cos4x−12cos2x)+√(916+cos4x−32cos2x)=12