wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the general solutions of the following equations;
2(sinxcos2x)sin2x(1+2sinx)+2cosx=0.

Open in App
Solution

2(sinxcos2x)sin2x(1+2sinx)+2cosx=0
2(sinxcos2x)2sinxcosx2sin2xcosx+2cosx=0
sinxcos2xsinxcosxsin2xcosx+cosx=0
sinx(12sin2x)sinxcosxsin2xcosx+cosx=0
{cos2x=1sin2x,sin2x=2cosxsinx}
sinx1+2sin2xsinxcosxsin2xcosx+cosx=0
sinxsinxcosx+2sin2xsin22xcosx+cosx1=0
sinx(1cosx)+2sin2x(1cosx)(1cosx)=0
(1cosx)[2sin2x+sinx1]=0
1cosx=0 or 2sin2x+sinx1=0
Now, 2sin2x+sinx1=0
sinx=1+14×2(1)2×2
sinx=1
sinx=12,sinx=1,cosx=1


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon