wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the general solutions of the following equations:
(i) sin 2θ=32
(ii) cos 3θ=12
(iii) sin 9θ=sin θ
(iv) sin 2θ=cos 3θ
(v) tan θ+cot 2θ=0
(vi) tan 3θ=cot θ
(vii) tan 2θ tan θ=1
(viii) tan mθ+cot nθ=0
(ix) tan pθ=cot qθ
(x) sin 2θ+cos θ=0
(xi) sin θ=tan θ
(xii) sin 3θ+cos 2θ=0

Open in App
Solution

We have:

(i) sin2θ = 32
sin2θ = sin π3
2θ = nπ + (-1)n π3 n Z
θ = nπ2 + (-1)n π6, n Z

(ii) cos3θ = 12
cos3θ = cos π3
3θ = 2nπ ± π3 n Z
θ = 2nπ3 ± π9, n Z

(iii) sin9θ = sinθ
sin9θ - sinθ = 0
2 sin 9θ - θ2 cos 9θ + θ2= 0
sin 8θ2 = 0 or cos 10θ2 = 0
sin 4θ = 0 or cos 5θ = 0
4θ = nπ, n Z or 5θ = (2n + 1)π2, n Z
θ = nπ4, n Z or θ = (2n + 1)π10, n Z


(iv) sin2θ = cos3θ
cos3θ =sin2θ
cos3θ = cos π2-2θ
3θ = 2nπ ± π2-2θ, nZ
On taking positive sign, we have:
3θ = 2nπ + π2-2θ
5θ = 2nπ + π2
θ = 2nπ5 + π10
θ = (4n + 1)π10, n Z

Now, on taking negative sign, we have:
3θ = 2nπ - π2 + 2θ, nZ
θ = 2nπ - π2

θ = (4n - 1)π2, n Z


(v) tanθ + cot2θ = 0

tan θ =-cot2θ tanθ = tan π2 + 2θ θ = nπ + π2 + 2θ, nZ -θ = nπ + π2, nZ θ = -nπ - π2, nZ θ = - π2, m =-nZ

(vi) tan3θ = cotθ
tan3θ = tan π2 - θ 3θ = nπ + π2 - θ, nZ 4θ = nπ + π2, nZ θ = nπ4 + π8, nZ

(vii) tan2θ tanθ = 1
tan2θ =1tan θ tan2θ = cot θ tan2θ =tan π2 - θ 2θ = nπ + π2 - θ, nZ 3θ = nπ + π2, nZ θ = nπ3 + π6, nZ

(viii) tanmθ + cotnθ = 0

tanmθ =-cotnθ tanmθ = tan π2 + nθ mθ = rπ + π2 + nθ, r Z (m - n) θ = rπ + π2, r Z θ = 2r + 1m - nπ2, r Z

(ix) tanpθ =cotqθ
tanpθ = tan π2 - qθ pθ = nπ + π2 - qθ , n Z (p + q)θ = nπ + π2, n Z θ = 2n + 1p + qπ2, nZ

(x) sin2θ + cosθ = 0
cosθ = -sin 2θ cosθ = cos π2 + 2θ θ = 2nπ ± π2 + 2θ, nZ
On taking positive sign, we have:
θ= 2nπ + π2 + 2θ -θ = 2nπ + π2 θ = 2mπ - π2, m =-n Zθ = (4m -1)π2, mZ
On taking negative sign, we have:
θ = 2nπ - π2 - 2θ 3θ = 2nπ - π2 θ =(4n - 1)π6, n Z

(xi) sinθ = tanθ
sinθ - tanθ = 0 sinθ - sinθcosθ = 0 sinθ 1 - 1cosθ = 0sinθ (cosθ -1) = 0

sinθ = 0 or cosθ - 1 = 0
Now,
sinθ= 0 θ = nπ, nZ

cosθ - 1 = 0 cosθ = 1 cosθ= cos0 θ = 2mπ, m Z

(xii) sin3θ + cos2θ = 0
cos2θ =- sin3θ cos2θ = cosπ2 + 3θ 2θ = 2nπ ± π2 + 3θ, n Z
On taking positive sign, we have:
2θ = 2nπ + π2 + 3θ -θ = 2nπ + π2 θ = 2mπ - π2, m=-n Z θ = (4m -1)π2, m Z
On taking negative sign, we have:
2θ = 2nπ - π2 - 3θ 5θ = 2nπ - π2 θ = (4n -1)π10, nZ

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon