wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the general solutions of the following equations:
(i) sin 2x=32
(ii) cos 3x=12
(iii) sin 9x=sin x
(iv) sin 2x=cos 3x
(v) tan x+cot 2x=0
(vi) tan 3x=cot x
(vii) tan 2x tan x=1
(viii) tan mx+cot nx=0
(ix) tan px=cot qx
(x) sin 2x+cos x=0
(xi) sin x=tan x
(xii) sin 3x+cos 2x=0

Open in App
Solution

We have:

(i) sin2x = 32
sin2x = sin π3
2x= nπ + (-1)n π3 n Z
x = nπ2 + (-1)n π6, n Z

(ii) cos3x = 12
cos3x = cos π3
3x= 2nπ ± π3 n Z
x= 2nπ3 ± π9, n Z

(iii) sin9x = sinx
sin9x - sinx= 0
2 sin 9x - x2 cos 9x + x2= 0
sin 8x2 = 0 or cos 10x2 = 0
sin 4x= 0 or cos 5x= 0
4x= nπ, n Z or 5x = (2n + 1)π2, n Z
x= nπ4, n Z or x= (2n + 1)π10, n Z

(iv) sin2x= cos3x
cos3x =sin2x
cos3x = cos π2-2x
3x = 2nπ ± π2-2x, nZ
On taking positive sign, we have:
3x = 2nπ + π2-2x
5x= 2nπ + π2
x = 2nπ5 + π10
x= (4n + 1)π10, n Z
Now, on taking negative sign, we have:
3x = 2nπ - π2 + 2x, nZ
x= 2nπ - π2
x = (4n - 1)π2, n Z

(v) tanx + cot2x = 0

tan x =-cot2x tanx = tan π2 + 2x x = nπ + π2 + 2x, nZ -x = nπ + π2, nZ x = -nπ - π2, nZ x = - π2, m =-nZ

(vi) tan3x = cotx
tan3x = tan π2 - x 3x = nπ + π2 - x, nZ 4x = nπ + π2, nZx = nπ4 + π8, nZ

(vii) tan2x tanx = 1
tan2x =1tan x tan2x = cot x tan2x =tan π2 - x 2x = nπ + π2 -x, nZ 3x= nπ + π2, nZx= nπ3 + π6, nZ

(viii) tanmx + cotnx = 0

tanmx =-cotnx tanmx = tan π2 + nx mx = rπ + π2 + nx, r Z (m - n) x = rπ + π2, r Z x = 2r + 1m - nπ2, r Z

(ix) tanpx =cotqx
tanpx= tan π2 - qx px = nπ + π2 - qx , n Z (p + q)x = nπ + π2, n Zx= 2n + 1p + qπ2, nZ

(x) sin2x + cosx= 0
cosx=-sin 2x cosx= cos π2 + 2xx= 2nπ ± π2 + 2x, nZ
On taking positive sign, we have:
x= 2nπ + π2 + 2x-x = 2nπ + π2 x= 2mπ - π2, m =-n Zx = (4m -1)π2, mZ
On taking negative sign, we have:
x= 2nπ - π2 - 2x 3x = 2nπ - π2 x =(4n - 1)π6, n Z

(xi) sinx = tanx
sinx - tanx = 0 sinx - sinxcosx = 0 sinx 1 - 1cosx = 0sinx (cosx -1) = 0

sinx = 0 or cosx - 1 = 0
Now,
sinx= 0 x = nπ, nZ

cosx - 1 = 0 cosx = 1 cosx= cos0 x= 2mπ, m Z

(xii) sin3x + cos2x = 0
cos2x =- sin3x cos2x= cosπ2 + 3x 2x= 2nπ ± π2 + 3x, n Z
On taking positive sign, we have:
2x = 2nπ + π2 + 3x -x = 2nπ + π2 x = 2mπ - π2, m=-n Z x = (4m -1)π2, m Z
On taking negative sign, we have:
2x = 2nπ - π2 - 3x 5x = 2nπ - π2 x = (4n -1)π10, nZ

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 5
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon